If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+49=56m
We move all terms to the left:
7m^2+49-(56m)=0
a = 7; b = -56; c = +49;
Δ = b2-4ac
Δ = -562-4·7·49
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-42}{2*7}=\frac{14}{14} =1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+42}{2*7}=\frac{98}{14} =7 $
| 4/5x-2=2/3x | | -6(x+2)=5x | | 4-5x=17-3x | | 6=8x+24 | | t÷3-4=9 | | 7x-5=-3+2 | | 28=1/3x+12 | | 1-2.05*x^-1+x^-2=0 | | (2x+1)^(2)=25 | | (6x+61)+(4x)+29=180 | | 12x–9x–1=18–10 | | 5x+20=7+18 | | 1x/2+13=9 | | 8/(2x+12)=6/(x+8) | | x/2=116 | | 3z÷4+4=10 | | 22t–12(2t)+32=0 | | 4-3x/13=2+5x/65-x/26 | | 4-5x/7=2+5x/35-x/14 | | 5(r+3)=45 | | 6n/6=222/6 | | 68+m1=180 | | 99/(x-11)=3 | | t-4t=7 | | 8x-19=10x+7 | | 3x^2(x^2-5)=5-x^2 | | 6(x-2=15 | | 3x^2x(x^2-5)=5-x^2 | | 3x-7/5=x+1 | | 4x^2-2^x+3.75=0 | | A=8A(5x+2B) | | Y=-0.9xX |